

ANNUAL COMPLIANCE SCRUBBER SOURCE EMISSION MONITORING-2022

AUSTRALIAN COMFORT GROUP PTY LTD

WETHERILL PARK, NSW

PROJECT No.: 7252/\$25956/22

DATE OF SURVEY: 12 OCTOBER 2022

DATE OF ISSUE: 14 (DRAFT) & 30 (FINAL) NOVEMBER 2022

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> PO Box 6398 Silverwater NSW 2128 Australia Tel: (02) 9737 9991

E-Mail: info@stephensonenv.com.au

ANNUAL COMPLIANCE SCRUBBER SOURCE EMISSION MONITORING-2022

AUSTRALIAN COMFORT GROUP PTY LTD

WETHERILL PARK, NSW

PROJECT No.: 7252/\$25956/22

DATE OF SURVEY: 12 OCTOBER 2021

DATE OF ISSUE: 14 (DRAFT) & (FINAL) NOVEMBER 2022

Pw Stephenson

M KIMBER

GARY HALL - ANE

TABLE OF CONTENTS

1	EXE	CUTIVE SUMMARY	.1
2	RESU	JLTS AND DISCUSSION	. 1
	2.1	Emission Test Results	1
3	Cor	NCLUSIONS	.3
APPEN	DIX A	- NATA ENDORSED EMISSION TEST REPORT	
APPEN	DIX B	- SAMPLE LOCATION	
		TABLE OF TABLES	
Table 2	!-1 E∧	nission Concentration Test Results, EPA ID Nos. 1 & 2	2
		TABLE OF FIGURES – APPENDICES	
FIGURE	B-1 E	PA No.1 Scrubber Stack Serving the Pouring Line	۱.
FIGURE	B-2 I	FPA NO. 2. SCRUBBER STACK SERVING THE HOT BLOCK STORE	Ш

1 EXECUTIVE SUMMARY

Stephenson Environmental Management Australia (SEMA) was requested by Australian Comfort Group Pty Limited (ACG) to assess the emission from the two exhaust stacks serving the pouring and curing processes at their flexible foam products manufacturing plant at 32-36 Frank Street, Wetherill Park, NSW.

Due to the uncertainty surrounding COVID-19 travel restrictions SEMA appointed the NATA accredited Air Noise Environment (ANE) to perform the emission testing under SEMA project management. The tests were undertaken during normal production conditions on October 12, 2022.

The objectives of the tests were to undertake annual compliance source emission tests of the flexible foam manufacture including pouring, curing and associated exhaust gas cleaning equipment as required by the Environment Protection Authority (EPA) Environment Protection Licence (EPL) No. 2372.

Table 2-1 summarises the scope of work undertaken with the EPL emission concentration limits. Table 2-1 also summarises the emission test results which are presented in detail in the NATA endorsed emission test report in Appendix A.

2 RESULTS AND DISCUSSION

2.1 EMISSION TEST RESULTS

ANE conducted the sampling for all the parameters and the analysis for flow, temperature, moisture, toluene diisocyanate (TDI) (2,4 and 2,6) and dichloromethane (DCM).

ANE is NATA accredited (No.15841) for this work. Refer to Appendix A for ANE's NATA accredited Emissions Test Report and Safe Work NSW/Test Safe Australia NATA accredited certificates of analysis.

The results of the source emission tests are presented in Table 2-1 and Appendix A. The sample locations are graphically presented in Appendix B.

TABLE 2-1 EMISSION CONCENTRATION TEST RESULTS, EPA ID Nos. 1 & 2

Emission Parameter	EPA ID No. 1 Exhaust Stack serving Pouring Line	EPA ID No. 2 Exhaust Stack serving Hot Block Store for curing foam		EPL 2732 Emission Limit
	Line	Run 1 Pour	Run 2 Cure	
Exhaust Temperature (C)	25	25	25	
Exhaust Velocity (m/s)	10.6	16.0	16.0	
Volumetric Flow (Dry) (m³/s)	10.7	16.2	16.2	
Dry Gas Molecular Weight (g/g-mole)	28.84	28.84	28.84	
Stack Static Pressure (mmH2O)	6.5	4.6	4.6	
Moisture (%)	1.6	1.6	1.6	
TDI 2,4 (mg/m³)	0.002	<0.002	<0.0007	0.002
DCM (mg/m³)	130	250	110	1200

Key:	TDI 2,4	=	Toluene Di-isocyanate 2,4
	DCM	=	Dichloromethane
	VOC	=	Volatile Organic Compounds
	°C	=	degrees Celsius
	m/s	=	metres per second
	m^3/s	=	dry cubic metre per second at 0°C and 101.3 kilopascals (kPa)
	kg/m³	=	Kilograms per cubic metre
	kPa	=	Kilo Pascals
	%	=	percent
	mg/m³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	<	=	less than the limit of detection for the analytical method

3 CONCLUSIONS

Thus, it is concluded that:

- All emission parameters TDI 2,4 and DCM emissions showed the flexible foam pouring and curing process and associated emission control system for EPA ID No.1 and No.2 were being operated efficiently and the measured emission test results complied with the discharge DCM and TDI 2,4 emission emission limits specified in EPL Licence No.2732.
- However, during the pouring process, the 2,4 TDI emission was at the EPL limit.

AUSTRALIAN COMFORT GROUP WETHERILL PARK, NSW	Annual Source Emission Monitoring October 2022
APPENDIX A – NATA ENDORSED EMISSION TEST	REPORT

Scrubber Emission Monitoring -Australian Comfort Group Pty Ltd - 2022

Stephenson Environmental Management

Wetherill Park, NSW

Sampling Date: 12 October 2022

Issued: 29 November 2022

Prepared by:

Air Noise Environment

ABN: 13 081 834 513

Accredited for Compliance with ISO/IEC 17025 - Testing

NATA Accreditation Number: 15841

Accredited for compliance with ISO/IEC 17025 - Testing

Should you have any queries regarding the contents of this document, please contact Air Noise Environment.

Brisbane Office

A: Level 6,69 Reservoir Street,

Surry Hills, NSW 2010

T: 02 8217 0706

E: ane@ane.com.au

Page 2 of 1

Air Noise Environment Stephenson Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Management Monitoring - Australian Monitoring - Australian Comfort Group Pty Ltd - 202
Environmental Monitoring - Australian Mo

Document Details

Project Reference: 227402.0033Report01.1.odt

Document Title: Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd - 2022

Client: Stephenson Environmental Management

Document Reference: C:\Users\gary.hall\Trinity Consultants, Inc\Stephenson Environmental - Wetherill

Park\227402.0033 - Dunlop Foams - stack testing for TDI\Out\

227402.0033Report01.1.odt

Version Number

Version:	Issue Date:	Prepared by:	Description:	Approved by:	Signature:
00	1/11/2022	Gary Hall	Internal Draft	-	-
01	1/11/2022	Gary Hall	Final	Gary Hall	GHall

Revision History

Revision:	Issue Date:	Approved by:	Signature:	Details of Revision:
01.1	29/11/2022	Gary Hall	GHall	Updated Lab results from revised report.
01.2			Į u	

Copyright:

Air Noise Environment retains ownership of the copyright to all reports, drawings, designs, plans, figures and other work produced by Air Noise Environment Pty Ltd during the course of fulfilling a commission. The client named on the cover of this document shall have a licence to use such documents and materials for the purpose of the subject commission provided they are reproduced in full or, alternatively, in part with due acknowledgement to Air Noise Environment. Third parties must not reproduce this document, in part or in full, without obtaining the prior permission of Air Noise Environment Pty Ltd.

Disclaimer:

This document has been prepared with all due care and attention by professional environmental practitioners according to accepted practices and techniques. This document is issued in confidence and is relevant only to the issues pertinent to the subject matter contained herein. Air Noise Environment Pty Ltd holds no responsibility for misapplication or misinterpretation by third parties of the contents of this document. If the revision history does not state that a Final version of the document has been issued, then it remains a draft. Draft versions of this document should not be relied upon for any purpose by the client, regulatory agencies or other interested parties.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s).

The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Air Noise Environment Pty Ltd for the purposes of this project is both complete and accurate.

Table of Contents

Executive Summary	5
Table 1: Summary of Results	5
Introduction	6
Methodology	7
Emission Testing	7
Laboratory Analysis	7
Deviation from Methods	7
Results	8
Introduction	8
Monitoring Results	8
Accuracy of Monitoring Results	9
Appendix A – Glossary of Terms	10
x of Tables	
ummary of Results	5
Monitoring Locations and Parameters	6
Summary Of Emission Monitoring Methods	7
	Table 1: Summary of Results Introduction Methodology Emission Testing Laboratory Analysis Deviation from Methods Results Introduction Monitoring Results Accuracy of Monitoring Results Appendix A - Glossary of Terms X of Tables Immary of Results Monitoring Locations and Parameters

Table 2.2: Table of NATA Accredited Laboratories with NATA Accreditation Number

Table 3.1: Flow and Sample Characteristics for EPA ID Nos 1 & 2 - 13 October 2022.

Table 3.2: Estimated Method Uncertainties

Page 4 of 12

7

Executive Summary

Stack Emission testing from the two exhaust stacks serving the pouring and curing processes at the Australian Comfort Group site in Wetherill park was conducted on 12 October 2022. Sampling was conducted for flow parameters as well as toluene diisocyanate 2.4 (TDI) and dichloromethane (DCM) to confirm compliance with Environment Protection Authority (EPA) Environment Protection Licence (EPL) No. 2372. A summary of the results are included in Table 1 below

Table 1: Summary of Results

Emission Parameter	EPA ID No. 1 Exhaust Stack	Release Point EPA Stack serving H for Curin	EPL 2732 Emission	
	serving Pouring Line	Run 1 Pour	Run 2 Cure	Limit
TDI (2,4) (mg/m³)	0.002	<0.002	<0.0007	0.002
DCM (mg/m³)	130	250	110	1200

1 Introduction

Stephenson Environmental Management (SEMA) commissioned Air Noise Environment Pty Ltd to conduct monitoring of air emissions from the Australian Comfort Group Pty Ltd site in Wetherill Park NSW. The emissions from the 2 stacks were completed on 12 October 2022.

The objectives of the emission testing was to meet the annual monitoring requirements for the stacks under the site's Environmental Protection Licence (EPL), Number (No.) 2372 and to determine if the concentration limits specified in the EPL were met.

Table 1.1 details the monitoring locations and the monitoring performed at each location.

Table 1.1: Monitoring Locations and Parameters

Compound	Release Point		
Compound	EPA ID 1	EPA ID 2	
Temperature	✓	1	
Velocity	✓	1	
Volumetric Flow	✓	1	
Dry Gas Density	✓	✓	
Moisture Content	✓	1	
TDI 2,4 (mg/m³)	✓	1	
DCM (mg/m³)	✓	1	

The monitoring of air emissions at the Australian Comfort Group was completed during normal operating conditions. Any factors that may have affected the monitoring results were not observed by, or brought to the notice of Air Noise Environment (ANE) staff except where noted in this report.

Page 6

Air Noise Environment Stephenson Environmental Management- Scrubber Emission Monitoring - Australian Comfort Group Pty Ltd
Environment Stephenson Environmental - Wetheril Parki227402.0033 - Dunlop Foams - stack testing for TDNOuts227402.0033ReportD

2 Methodology

2.1 Emission Testing

Table 2.1 below lists the Methods used when undertaking emission monitoring at the Australian Comfort Group site.

All air quality monitoring undertaken by Air Noise Environment (ANE) has been undertaken in accordance with the methods identified in Table 2.1 below unless as specified in Section 2.3.

Table 2.1: Summary Of Emission Monitoring Methods

Measurement Parameter	Method Equivalency
Temperature	TM-2 (USEPA Method 2 Determination of Stack Gas Velocity and Flow Rate)
Dry Gas Density	TM23 (USEPA Method 3 Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)
Flow	TM-2 (USEPA Method 2 Determination of Stack Gas Velocity and Flow Rate)
Moisture Content	TM-22 USEPA Method 4 Determination of Moisture Content in Stack Gases
Molecular Weight	TM23 (USEPA Method 3 Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources)
TDI 2,4 (mg/m³)	HSE-MDHS 25/3, (WCA 110)
DCM (mg/m³)	TM-34 - USEPA Method 18 Measurement of Gaseous Organic Compounds by Gas Chromatography.

2.2 Laboratory Analysis

Table 2.2 Provides a list of the NATA accredited laboratories that performed the applicable analysis, NATA accreditation number, and report number.

Table 2.2: Table of NATA Accredited Laboratories with NATA Accreditation Number

Measurement Parameter	NATA Accreditation Number	Report Number
TDI 2,4 (mg/m³)	SafeWork NSW TestSafe Australia 3726	2022-4226
DCM (mg/m³)	SafeWork NSW TestSafe Australia 3726	2022-4225

2.3 Deviation from Methods

Post sampling, DCM and TDI sample media were provided to SEMA who submitted the samples to Test Safe Laboratories for the analysis.

Page 7 of 1

3 Results

3.1 Introduction

The following sections present a summary of results for each sampling location.

3.1.1 Monitoring Results

Results of emissions monitoring for the 2 stacks are provided in Table 3.1 below for emissions monitoring completed on 12 October 2022.

Table 3.1: Flow and Sample Characteristics for EPA ID Nos 1 & 2 - 13 October 2022.

Parameter	Unit of Measure	EPA ID No. 1 Exhaust stack serving Pouring Line	Exhaust st H	O No. 2 ack serving lot Store	EPL 2732 EPA limit
			Run 1 Pour	Run 2 Purge	
Sample Start Time (hours)	hh:mm	10:27	10:27	11:53	-
Sample Finish Time (hours)	hh:mm	11:27	11:27	14:53	-
Stack Temperature	°C	25	25	25	-
Stack Cross-Sectional area	m²	1.13	1.13	1.13	-
Velocity	m/s	10.6	16.0	16.0	-
Actual Volumetric flow	m³/s	12	18.3	18.3	-
Normal volumetric flow rate	Nm³/s	10.7	16.2	16.2	-
Dry Gas Molecular Weight	g/g-mole	28.84	28.84	28.84	-
Stack Static Pressure	mmH₂O	6.5	4.6	4.6	-
Moisture	%	1.6	1.6	1.6	-
TDI 2,4	mg/m³	0.002	<0.002	<0.0007	0.002
DCM	mg/m³	130	250	110	1200

3.2 Accuracy of Monitoring Results

Table 3.2 presents a summary of the estimated method uncertainties for each of the monitoring parameters.

Table 3.2: Estimated Method Uncertainties

Measurement Parameter	Method	% Uncertainty
TDI (Total Isocyanates)	HSE-MDHS 25/3 (WCA.110)	-
VOC's (DCM)	NSW TM-34	15
Velocity	NSW TM-2 (AS 4323.1, US EPA2)	5

[#] Uncertainty values cited are calculated at the 95% confidence level, with a coverage factor of 2.

Appendix A - Glossary of Terms

Al	PPENDIX A: GLOSSARY OF TERMS						
<	The analytes tested for was not detected, the value stated is the reportable limit of detection						
μg	Micrograms (10⁴grams)						
AS	Australian Standard						
dscm	dry standard cubic meters (at 0°C and 1 atmosphere)						
g	grams						
kg	kilograms						
m	metres						
m³	Cubic Metres, actual gas volume in cubic metres as measured.						
mg	Milligrams						
min	Minute						
mg/m³	Milligrams (10 ⁻³) per cubic metre.						
mmH₂O	Millimetres of water						
Mole	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022\ 140\ 76\ x\ 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A , when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. This definition implies the exact relation $N_A = 6.022\ 140\ 76\ x\ 10^{23}\ mol^{-2}$. Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A : $1\ mol = \left(\frac{6.022\ 140\ 76\ x\ 10^{23}}{N_A}\right)$ The effect of this definition is that the mole is the amount of substance of a system that contains $6.022\ 140\ 76\ x\ 10^{23}$ specified elementary entities.						
N/A	Not Applicable						
ng	Nanograms (10 ⁻³ grams)						
Nm³	Normalised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa).						
ou	Odour Units						
°C	Degrees Celsius						
μg/m³	Micrograms (104) per cubic metre. Conversions from $\mu g/m^3$ to parts per						

up Pty Ltd - 2022

APPENDIX A: GLOSSARY OF TERMS						
	volume concentrations (ie, ppb) are calculated at 25 °C.					
ppb / ppm	Parts per billion / million.					
PM	Particulate Matter.					
PM ₁₀ , PM _{2.5} , PM ₁	Fine particulate matter with an equivalent aerodynamic diameter of less than 10, 2.5 or 1 micrometres respectively. Fine particulates are predominantly sourced from combustion processes. Vehicle emissions are a key source in urban environments.					
sec	Second					
Sm ³	Standardised Cubic Metres - Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value (e.g. 7% O ₂).					
STP	Standard Temperature and Pressure (0°C and 101.3 kPa).					
TVOC	Total Volatile Organic Compounds. These compounds can be both toxic and odorous.					
USEPA	United States Environmental Protection Agency					

Peter Stephenson

Lab. Reference:

2022-4225

Stephenson Environmental Management Australia

PO Box 6398

SILVERWATER NSW 1811

Samples analysed as received

SAMPLE ORIGIN: Project No: 7252

DATE OF INVESTIGATION: 12/10/2022

DATE RECEIVED:

14/10/22

ANALYSIS REQUIRED: Volatile Organic Compound

REPORT OF ANALYSIS OFFICIAL: Sensitive - Personal

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

Martin Mazereeuw

Manager

Date: 20/10/22

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: <u>lab@safework.nsw.gov.au</u> W: <u>testsafe.com.au</u> ABN 81 913 830 179 ISC MRA NATA

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

Client: Stephenson Sample ID: 728358 Date Sampled: 12/10/2022 Date Analysed: 18/10/2022 Reference Number: 2022-4225-1

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
			μg/section					μg/s	ection
	Aliphatic hydrocarbons (LOQ =lag(ch; AIR - AZI =Sag(ch)					Aromatic hydrocarbon	5 (LOQ = 1µg/ce	mpound/sect	an)
1	2-Methylbutane	78-78-4	<loq< td=""><td><loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><1.00</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><1.00</td></loq<></td></loq<>	39	Benzene	71-43-2	<loq< td=""><td><1.00</td></loq<>	<1.00
2	n-Pentane	109-66-0	<l0q< td=""><td><1.0Q</td><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><loq< td=""><td><1.00</td></loq<></td></l0q<>	<1.0Q	40	Ethylbenzene	100-41-4	<loq< td=""><td><1.00</td></loq<>	<1.00
3	2-Methylpentase	107-83-5	<l0q< td=""><td><l0q< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<>	41	Isopropylbenzene	98-82-8	<l0q< td=""><td><1.00</td></l0q<>	<1.00
4	3-Methylpentane	96-14-0	<l0q< td=""><td><loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><1.00</td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><1.00</td></loq<></td></loq<>	42	1,2,3-Trimethylbenzene	526-73-8	<loq< td=""><td><1.00</td></loq<>	<1.00
5	Cyclopentane	287-92-3	<1.0Q	<loq< td=""><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><1.0Q</td><td><1.00</td></loq<>	43	1,2,4-Trimethylbenzene	95-63-6	<1.0Q	<1.00
6	Methylcyclopentane	96-37-7	<l0q< td=""><td><loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><l0q< td=""><td>4.00</td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><l0q< td=""><td>4.00</td></l0q<></td></loq<>	44	1,3,5-Trimethylbenzene	108-67-8	<l0q< td=""><td>4.00</td></l0q<>	4.00
7	2,3-Dimethylpentane	565-59-3	<l0q< td=""><td><l0q< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<>	45	Styrene	100-42-5	<l0q< td=""><td><1.00</td></l0q<>	<1.00
8	n-Hexane	110-54-3	<l00< td=""><td><l00< td=""><td>46.</td><td>Tolsene</td><td>108-88-3</td><td><l00< td=""><td>6</td></l00<></td></l00<></td></l00<>	<l00< td=""><td>46.</td><td>Tolsene</td><td>108-88-3</td><td><l00< td=""><td>6</td></l00<></td></l00<>	46.	Tolsene	108-88-3	<l00< td=""><td>6</td></l00<>	6
9	3-Methylhexane	589-34-4	<1.0Q	<loq< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>180-07.73</td><td><1.0Q</td><td><l00< td=""></l00<></td></loq<>	47	p-Xylene &/or m-Xylene	180-07.73	<1.0Q	<l00< td=""></l00<>
0	Cyclohevane	210-82-7	<1.0Q	<l0q< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><1.0Q</td><td><1.00</td></l0q<>	48	o-Xylene	95-47-6	<1.0Q	<1.00
11	Methylcyclohexane	108-87-2	<1.0Q	<l0q< td=""><td></td><td>Ketones (LOQ -tµg/ch; LOQ</td><td>145, 153 -10µg/c</td><td>is; 650, 651 -</td><td>50µg(c/s)</td></l0q<>		Ketones (LOQ -tµg/ch; LOQ	145, 153 -10µg/c	is; 650, 651 -	50µg(c/s)
2	2,2,4-Trimethylpentane	540-84-1	<1.0Q	<l0q< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td><1.0Q</td><td><l00< td=""></l00<></td></l0q<>	49	Acetone	67-64-1	<1.0Q	<l00< td=""></l00<>
3	n-Heptane	142-82-5	<loq< td=""><td><l0q< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><1.0Q</td><td><1.00</td></l0q<></td></loq<>	<l0q< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><1.0Q</td><td><1.00</td></l0q<>	50	Acetoin	513-86-0	<1.0Q	<1.00
4	n-Octane	111-65-9	<1.0Q	<l00< td=""><td>51</td><td>Discetone alcohol</td><td>123-42-2</td><td><1.0Q</td><td><1.00</td></l00<>	51	Discetone alcohol	123-42-2	<1.0Q	<1.00
5	n-Nonane	111-84-2	<1.0Q	<1.0Q	52	Cyclohexanone	108-94-1	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
6	n-Decane	124-18-5	<1.0Q	4.00	53	Isophorone	78-59-1	<1.0Q	<l00< td=""></l00<>
7	n-Undecane	1120-21-4	<l0q< td=""><td><l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<>	54	Methyl ethyl ketone (MEK)	78-93-3	<l0q< td=""><td><1.00</td></l0q<>	<1.00
8	n-Dodecane	112-40-3	<1.00	<1.0Q	55	Methyl isobutyl ketone (MIBK)	108-10-1	<1.0Q	<1.00
9	n-Tridecane	629-50-5	<l00< td=""><td><1.0Q</td><td></td><td colspan="4">Alcohols (LOQ -tugicis; 855, 827, 828, 860 -10µgic/o)</td></l00<>	<1.0Q		Alcohols (LOQ -tugicis; 855, 827, 828, 860 -10µgic/o)			
0	n-Tetradocane	629-59-4	<1.0Q	<l00< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	56	Ethyl alcohol	64-17-5	<1.00	<l00< td=""></l00<>
11	α-Pinene	89-56-8	<l00< td=""><td><1.0Q</td><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td><1.00</td><td><1.00</td></l00<>	<1.0Q	57	n-Butyl alcohol	71-36-3	<1.00	<1.00
2	β-Ріпепе	127-91-3	<l0q< td=""><td><1.0Q</td><td>58</td><td>Isobutyf alcohol</td><td>78-83-1</td><td><l00< td=""><td><1.00</td></l00<></td></l0q<>	<1.0Q	58	Isobutyf alcohol	78-83-1	<l00< td=""><td><1.00</td></l00<>	<1.00
3	D-Limonene	138-86-3	<l0q< td=""><td><1.0Q</td><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><l00< td=""><td><1.00</td></l00<></td></l0q<>	<1.0Q	59	Isopropyl alcohol	67-63-0	<l00< td=""><td><1.00</td></l00<>	<1.00
T	Chlorinated hydrocar	bons (Log-1)	g/compound	(sample)	60	2-Ethyl hexanol	104-76-7	<l00< td=""><td><1.00</td></l00<>	<1.00
4	Dichloromethane	75-09-2	712	<1.0Q	61	Cyclohexanol	708-93-0	<l00< td=""><td><1.00</td></l00<>	<1.00
5	1,1-Dichloroethane	75-34-3	<l00< td=""><td><l00< td=""><td></td><td>Acetates (LOQ=tpgfeh; #62</td><td></td><td></td><td></td></l00<></td></l00<>	<l00< td=""><td></td><td>Acetates (LOQ=tpgfeh; #62</td><td></td><td></td><td></td></l00<>		Acetates (LOQ=tpgfeh; #62			
6	1,2-Dichloroethane	107-06-2	<l0q< td=""><td><loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<></td></l0q<>	<loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	62	Ethyl acetate	141-78-6	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
7	Chloroform	67-66-3	<1.00	<1.0Q	63	n-Propyl acetate	109-60-4	<l00< td=""><td><1.00</td></l00<>	<1.00
8	1,1,1-Trichloroethane	71-55-6	<1.00	<l0q< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><1.00</td><td><l00< td=""></l00<></td></l0q<>	64	n-Butyl acetate	123-86-4	<1.00	<l00< td=""></l00<>
9	1,1,2-Trichloroethane	79-00-5	<1.0Q	<loq< td=""><td>65</td><td>Isobutyl apetate</td><td>110-19-0</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	65	Isobutyl apetate	110-19-0	<1.00	<l00< td=""></l00<>
0	Trichloroethylene	79-01-6	<1.00	<l00< td=""><td></td><td>Ethers (LOQ =1,eg/cli) 866 =16</td><td></td><td></td><td>-</td></l00<>		Ethers (LOQ =1,eg/cli) 866 =16			-
1	Carbon tetrachloride	36-23-5	<1.0Q	<l0q< td=""><td>66</td><td>Ethyl ether</td><td>60-29-7</td><td><1.00</td><td><l00< td=""></l00<></td></l0q<>	66	Ethyl ether	60-29-7	<1.00	<l00< td=""></l00<>
2	Perchloroethylene	127-18-4	<l0q< td=""><td><l00< td=""><td>67</td><td>text-Butyl methyl ether acres</td><td>1634-04-4</td><td><1.00</td><td><l00< td=""></l00<></td></l00<></td></l0q<>	<l00< td=""><td>67</td><td>text-Butyl methyl ether acres</td><td>1634-04-4</td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	67	text-Butyl methyl ether acres	1634-04-4	<1.00	<l00< td=""></l00<>
3	1,1,2,2-Tetrachloroethane	79.34.5	<loq< td=""><td><l00< td=""><td>68</td><td>Tetrahydrofigan (THF)</td><td>109.99.9</td><td><1.00</td><td><l00< td=""></l00<></td></l00<></td></loq<>	<l00< td=""><td>68</td><td>Tetrahydrofigan (THF)</td><td>109.99.9</td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	68	Tetrahydrofigan (THF)	109.99.9	<1.00	<l00< td=""></l00<>
4	Chlorobenzene	108-90-7	<loq< td=""><td><l0q< td=""><td></td><td>Glycols (LOQ-Lug/cls; NOX, N</td><td></td><td></td><td></td></l0q<></td></loq<>	<l0q< td=""><td></td><td>Glycols (LOQ-Lug/cls; NOX, N</td><td></td><td></td><td></td></l0q<>		Glycols (LOQ-Lug/cls; NOX, N			
5	1,2-Dichlorobenzene	95-50-1	<loq< td=""><td><1.00</td><td>69</td><td>PGME</td><td>107-98-2</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	<1.00	69	PGME	107-98-2	<1.00	<l00< td=""></l00<>
6	1,4-Dichlorobenzene	106-46-7	<loq< td=""><td><1.00</td><td>70</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	<1.00	70	Ethylene glycol diethyl ether	629-14-1	<1.00	<l00< td=""></l00<>
1	Miscellaneous (LOQ 137			-	71	PGMEA	108-65-6	<1.00	<l00< td=""></l00<>
7	Acetonitrile	75.05.8	<loq< td=""><td><l00< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><1.00</td><td><l00< td=""></l00<></td></l00<></td></loq<>	<l00< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	72	Cellosolve acetate	111-15-9	<1.00	<l00< td=""></l00<>
8	n-Vinyt-2-pyrrolidinone	88-12-0	<loq< td=""><td><1.0Q</td><td>73</td><td>DGMEA</td><td>112-15-2</td><td><1.00</td><td>4.00</td></loq<>	<1.0Q	73	DGMEA	112-15-2	<1.00	4.00
1	Extra compound 0.00		37.1			Extra compound (1.00-			1
4	Bromopropane *	706-94-5	<l0q< td=""><td><1.00</td><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><1.0Q</td><td><1.0Q</td></l0q<>	<1.00	75	Naphthalene *	91-20-3	<1.0Q	<1.0Q
	Total VOCs (LOQ -50µg/core	pound/section)	712	<1.0Q		Worksheet check		20	22/42254

2022-4225

Page 2 of 5

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thomleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08061 0817

Client: Stephenson Sample ID: 728359 Date Sampled: 12/10/2022 Date Analysed: 18/10/2022 Reference Number: 2022-4225-2

No	Compounds	Compounds CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	*2001*2000/*1011		μg/se	ection		3000004.000	960,0000555	µg/section	
1	Aliphatic hydrocarbor	18 (LOQ =1µg/cla	; #18 - #23 =5	Spig(cla)		Aromatic hydrocarbon	8 (LOQ = Ippico	enpowed/sect	en)
1	2-Methylbutane	78-78-4	<loq< th=""><th><f00< th=""><th>39</th><th>Benzene</th><th>71-43-2</th><th><1.0Q</th><th><1.0Q</th></f00<></th></loq<>	<f00< th=""><th>39</th><th>Benzene</th><th>71-43-2</th><th><1.0Q</th><th><1.0Q</th></f00<>	39	Benzene	71-43-2	<1.0Q	<1.0Q
2	n-Pentane	/09-66-0	<l0q< td=""><td><1.0Q</td><td>40</td><td>Ethylbenzeae</td><td>100-41-4</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<>	<1.0Q	40	Ethylbenzeae	100-41-4	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
3	2-Methylpentane	107-83-5	<l0q< td=""><td><l00< td=""><td>41</td><td>Isopropy/benzene</td><td>98-82-8</td><td><1.0Q</td><td><1.0Q</td></l00<></td></l0q<>	<l00< td=""><td>41</td><td>Isopropy/benzene</td><td>98-82-8</td><td><1.0Q</td><td><1.0Q</td></l00<>	41	Isopropy/benzene	98-82-8	<1.0Q	<1.0Q
4	3-Methylpentane	96-14-0	<loq< td=""><td><l00< td=""><td>42</td><td>1,2,3-Trimethythenzene</td><td>526-73-8</td><td><l00< td=""><td><1.00</td></l00<></td></l00<></td></loq<>	<l00< td=""><td>42</td><td>1,2,3-Trimethythenzene</td><td>526-73-8</td><td><l00< td=""><td><1.00</td></l00<></td></l00<>	42	1,2,3-Trimethythenzene	526-73-8	<l00< td=""><td><1.00</td></l00<>	<1.00
5	Cyclopentane	287-92-3	<l0q< td=""><td><1.00</td><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><l0q< td=""><td><1.00</td></l0q<></td></l0q<>	<1.00	43	1,2,4-Trimethylbenzene	95-63-6	<l0q< td=""><td><1.00</td></l0q<>	<1.00
6	Methylcyclopentane	96-37-7	<loq< td=""><td><loq< td=""><td>44</td><td>1,3,5-Trimethy/benzone</td><td>108-67-8</td><td><1.0Q</td><td><1.0Q</td></loq<></td></loq<>	<loq< td=""><td>44</td><td>1,3,5-Trimethy/benzone</td><td>108-67-8</td><td><1.0Q</td><td><1.0Q</td></loq<>	44	1,3,5-Trimethy/benzone	108-67-8	<1.0Q	<1.0Q
7	2,3-Dimethylpentane	565-59-3	<loq< td=""><td><loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><l0q< td=""><td><1.00</td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><l0q< td=""><td><1.00</td></l0q<></td></loq<>	45	Styrene	100-42-5	<l0q< td=""><td><1.00</td></l0q<>	<1.00
8	n-Hexane	110-54-3	<1.0Q	<1.00	46	Toluene:	108-88-3	3	7
9	3-Methythexane	589-34-4	<l0q< td=""><td><l0q< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>365-25-3 at 368-38-3</td><td><l00< td=""><td><1.00</td></l00<></td></l0q<></td></l0q<>	<l0q< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>365-25-3 at 368-38-3</td><td><l00< td=""><td><1.00</td></l00<></td></l0q<>	47	p-Xylene &/or m-Xylene	365-25-3 at 368-38-3	<l00< td=""><td><1.00</td></l00<>	<1.00
10	Cyclohexane	710-82-7	<l0q< td=""><td><loq< td=""><td>48</td><td>n-Xylene</td><td>93-47-6</td><td><loq.< td=""><td><1.00</td></loq.<></td></loq<></td></l0q<>	<loq< td=""><td>48</td><td>n-Xylene</td><td>93-47-6</td><td><loq.< td=""><td><1.00</td></loq.<></td></loq<>	48	n-Xylene	93-47-6	<loq.< td=""><td><1.00</td></loq.<>	<1.00
П	Methylcyclohexane	108-87-2	<1.0Q	<loq< td=""><td></td><td>Ketones (LOQ -lagiels; LOQ</td><td>#49, #53 =18ag/c</td><td>/s; #50, #51 =</td><td>Stag (c/s)</td></loq<>		Ketones (LOQ -lagiels; LOQ	#49, #53 =18ag/c	/s; #50, #51 =	Stag (c/s)
12	2,2,4-Trimethylpentane	540-84-1	<loq< td=""><td><loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td><loq< td=""><td><1.00</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td><loq< td=""><td><1.00</td></loq<></td></loq<>	49	Acetone	67-64-1	<loq< td=""><td><1.00</td></loq<>	<1.00
13	n-Heptane	142-82-5	<1.0Q	<loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><1.0Q</td><td>4.00</td></loq<>	50	Acetoin	513-86-0	<1.0Q	4.00
14	n-Octane	111-63-9	<1.0Q	<loq< td=""><td>51</td><td>Diacetone alcohol</td><td>123-42-2</td><td><1.0Q</td><td><1.00</td></loq<>	51	Diacetone alcohol	123-42-2	<1.0Q	<1.00
15	n-Nonane	111-84-2	<1.0Q	<1.0Q	52	Cyclohexanone	108-94-1	<l0q< td=""><td><1.00</td></l0q<>	<1.00
16	n-Decane	124-18-5	<1.00	<1.0Q	53	Isophorene	78-59-1	<l0q< td=""><td><1.00</td></l0q<>	<1.00
17	n-Undecane	1120-21-4	<1.00	<loq< td=""><td>54</td><td>Methyl ethyl ketone (NEK)</td><td>78-93-3</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	54	Methyl ethyl ketone (NEK)	78-93-3	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
8	n-Dodecane	112-40-3	<1.0Q	<l00< td=""><td>55</td><td>Methyl isobutyl ketone (MBK)</td><td></td><td><1.00</td><td><1.00</td></l00<>	55	Methyl isobutyl ketone (MBK)		<1.00	<1.00
19	n-Tridecone	629-50-5	<1.00	<l00< td=""><td>\Box</td><td colspan="4">Alcohols (LOQ =1,000/s), 856, 857, 858, 860 =10,000/s)</td></l00<>	\Box	Alcohols (LOQ =1,000/s), 856, 857, 858, 860 =10,000/s)			
20	a-Tetradecane	629-59-4	<l00< td=""><td><l00< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><1.00</td><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	56	Ethyl alcohol	64-17-5	<1.00	<l00< td=""></l00<>
21	a-Pinene	80-36-8	<1.0Q	<l00< td=""><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l00<>	57	n-Butyl alcohol	71-36-3	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
12	ß-Pinene	127-91-3	<1.00	<1.00	58	Isobutyl alcohol	78-83-1	<1.00	<l00< td=""></l00<>
13	D-Limonene	138-86-3	<l00< td=""><td><l00< td=""><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><000</td><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td>59</td><td>Isopropyl alcohol</td><td>67-63-0</td><td><000</td><td><l00< td=""></l00<></td></l00<>	59	Isopropyl alcohol	67-63-0	<000	<l00< td=""></l00<>
1	Chlorinated hydrocarbons (LOQ-180/carposed/sample)					2-Ethyl hexanol	104-76-7	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
24	Dichloromethane	73-09-2	1306	<1.00	61	Cyclohexanol	108-93-0	<1.00	<l00< td=""></l00<>
15	1.1-Dichloroethane	75-34-3	<1.00	<l00< td=""><td>-</td><td>Acetates (1.00-tag/da 862</td><td></td><td>200</td><td>Loc</td></l00<>	-	Acetates (1.00-tag/da 862		200	Loc
26	1.2-Dichlomethane	107-06-2	<l00< td=""><td><l00< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><1.00</td><td><1.00</td></l00<></td></l00<>	<l00< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><1.00</td><td><1.00</td></l00<>	62	Ethyl acetate	141-78-6	<1.00	<1.00
27	Chloroform	67-66-3	<l00< td=""><td><l00< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><1.00</td><td><0.00</td></l00<></td></l00<>	<l00< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><1.00</td><td><0.00</td></l00<>	63	n-Propyl acetate	109-60-4	<1.00	<0.00
18	L.L.I-Trichtoroethane	71-55-6	<l00< td=""><td><l00< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td>4.00</td><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td>4.00</td><td><l00< td=""></l00<></td></l00<>	64	n-Butyl acetate	123-86-4	4.00	<l00< td=""></l00<>
29	1,1,2-Trichloroethane	79-00-1	<l00< td=""><td><l00< td=""><td>65</td><td>Isobutyl acetate</td><td></td><td><1.00</td><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td>65</td><td>Isobutyl acetate</td><td></td><td><1.00</td><td><l00< td=""></l00<></td></l00<>	65	Isobutyl acetate		<1.00	<l00< td=""></l00<>
10	Trichloroethylene	79-01-6	<l00< td=""><td><l00< td=""><td>-</td><td>Ethers (LOQ-tag/o/; #66-1)</td><td>110-19-0</td><td>-100</td><td>-200</td></l00<></td></l00<>	<l00< td=""><td>-</td><td>Ethers (LOQ-tag/o/; #66-1)</td><td>110-19-0</td><td>-100</td><td>-200</td></l00<>	-	Ethers (LOQ-tag/o/; #66-1)	110-19-0	-100	-200
31	Carbon tetrachloride	56-23-5	<l00< td=""><td><1.00</td><td>66</td><td>Ethyl other</td><td></td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<>	<1.00	66	Ethyl other		<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
12	Perchloroethylene	-	<l00< td=""><td><1.00</td><td>67</td><td>terr-Butyl methyl ether same</td><td>60-29-7</td><td><1.00</td><td><t00< td=""></t00<></td></l00<>	<1.00	67	terr-Butyl methyl ether same	60-29-7	<1.00	<t00< td=""></t00<>
33	1,1,2,2-Tetrachloroethane	127-18-4	<l0q< td=""><td><1.00</td><td>68</td><td></td><td>1634-04-4</td><td>_</td><td><1.00</td></l0q<>	<1.00	68		1634-04-4	_	<1.00
34	Chlorohenzene	79-34-5	<l00< td=""><td>4.00</td><td>00</td><td>Tetrahydroforan (THF)</td><td>109-99-9</td><td><l00< td=""><td><luq< td=""></luq<></td></l00<></td></l00<>	4.00	00	Tetrahydroforan (THF)	109-99-9	<l00< td=""><td><luq< td=""></luq<></td></l00<>	<luq< td=""></luq<>
15				-	69	Glycols (LOQ=lag(ch: #69, #	-	400	4.00
16	1,2-Dichlorobenzene	95-50-7	<l00< td=""><td><l00< td=""><td>70</td><td>PGME</td><td>107-98-2</td><td><1.00</td><td>4.00</td></l00<></td></l00<>	<l00< td=""><td>70</td><td>PGME</td><td>107-98-2</td><td><1.00</td><td>4.00</td></l00<>	70	PGME	107-98-2	<1.00	4.00
10		106-46-7	<loq< td=""><td><1.0Q</td><td>-</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<>	<1.0Q	-	Ethylene glycol diethyl ether	629-14-1	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
-	Miscellaneous (1.00 soz-	-	and the same of	-	71	POMEA	108-65-6	<1.00	4.00
37	Acetonitrile	75-05-8	<loq< td=""><td><loq< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><loq< td=""><td><1.0Q</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><loq< td=""><td><1.0Q</td></loq<></td></loq<>	72	Cellosolve acetate	111-15-9	<loq< td=""><td><1.0Q</td></loq<>	<1.0Q
38	n-Vinyt-2-pyrrolidinone	88-12-0	<loq< td=""><td><l0q< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><loq< td=""><td><1.00</td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><loq< td=""><td><1.00</td></loq<></td></l0q<>	73	DGMEA	112-15-2	<loq< td=""><td><1.00</td></loq<>	<1.00
74	Extra compound 0.00 -				75	Extra compound (1.00 = Naphthalene *	50aa/compound/ 91-20-3	<loo< td=""><td>4.00</td></loo<>	4.00
+	Total VOCs (LOQ =50µg/com	-	1309	<l00< td=""><td>72</td><td>Worksheet check</td><td>71-20-3</td><td>_</td><td>384929</td></l00<>	72	Worksheet check	71-20-3	_	384929

2022-4225

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08061 0817

Client: Stephenson Sample ID: 728360 Date Sampled: 12/10/2022
Date Analysed: 18/10/2022
Reference Number: 2022-4225-3

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back	
		Cristin	μg/section				C.A.S . NO	µg/s	ection	
	Aliphatic hydrocarbons (LOQ = µg o/s; 468 - 423 = 5µg o/s)					Aromatic hydrocarbon	S (LOQ = lag/o	mound'section)		
1	2-Methylbutane	78-78-4	<1.0Q	<l0q< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><1.0Q</td><td><loq< td=""></loq<></td></l0q<>	39	Benzene	71-43-2	<1.0Q	<loq< td=""></loq<>	
2	n-Pentane	109-66-0	<1.0Q	<l0q< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><1.0Q</td><td><l00< td=""></l00<></td></l0q<>	40	Ethylbenzene	100-41-4	<1.0Q	<l00< td=""></l00<>	
3	2-Methylpentane	107-83-5	<loq< td=""><td><l0q< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<>	41	Isopropylbenzene	98-82-8	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>	
4	3-Methylpentane	96-14-0	<l0q< td=""><td><l0q< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><1.0Q</td><td><l00< td=""></l00<></td></l0q<></td></l0q<>	<l0q< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><1.0Q</td><td><l00< td=""></l00<></td></l0q<>	42	1,2,3-Trimethylbenzene	526-73-8	<1.0Q	<l00< td=""></l00<>	
5	Cyclopentane	287-92-3	<l00< td=""><td><1.0Q</td><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<>	<1.0Q	43	1,2,4-Trimethylbenzene	95-63-6	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>	
6	Methylcyclopentane	96-37-7	<loq< td=""><td><1.0Q</td><td>44</td><td>1,3,5-Trimethythenzene</td><td>108-67-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<1.0Q	44	1,3,5-Trimethythenzene	108-67-8	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
7	2,3-Dimethylpentane	565-59-3	<l0q< td=""><td><loq< td=""><td>45</td><td>Styrene</td><td>100-12-5</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>45</td><td>Styrene</td><td>100-12-5</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	45	Styrene	100-12-5	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
8	n-Hexane	110-54-3	<loq< td=""><td><l0q< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td>4</td><td>3</td></l0q<></td></loq<>	<l0q< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td>4</td><td>3</td></l0q<>	46	Toluene	108-88-3	4	3	
9	3-Methylhexane	589-34-4	<1.0Q	<l0q< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>181-0-1</td><td><1.0Q</td><td><1.0Q</td></l0q<>	47	p-Xylene &/or m-Xylene	181-0-1	<1.0Q	<1.0Q	
10	Cyclohexane	110-82-7	<l0q< td=""><td><loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	48	o-Xylene	95-47-6	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>	
11	Methylcyclohexane	108-87-2	<loq< td=""><td><1.0Q</td><td></td><td>Ketones (LOQ =tag/cir; LOQ</td><td>A49, 853 =10µg/c</td><td>s; #50, #51 =</td><td>Stag(c/s)</td></loq<>	<1.0Q		Ketones (LOQ =tag/cir; LOQ	A49, 853 =10µg/c	s; #50, #51 =	Stag(c/s)	
12	2,2,4-Trimethylpentane	540-84-1	<l0q< td=""><td><loq< td=""><td>49</td><td>Acctone</td><td>67-64-1</td><td><l0q< td=""><td><1.0Q</td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td>49</td><td>Acctone</td><td>67-64-1</td><td><l0q< td=""><td><1.0Q</td></l0q<></td></loq<>	49	Acctone	67-64-1	<l0q< td=""><td><1.0Q</td></l0q<>	<1.0Q	
13	n-Heptane	142-82-5	<l0q< td=""><td><loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<>	50	Acetoin	513-86-0	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>	
14	n-Octane	111-65-9	<1.0Q	<loq< td=""><td>51</td><td>Discetone alcohol</td><td>123-42-2</td><td><loq< td=""><td><1.0Q</td></loq<></td></loq<>	51	Discetone alcohol	123-42-2	<loq< td=""><td><1.0Q</td></loq<>	<1.0Q	
15	n-Nonane	111-84-2	<l0q< td=""><td><loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-9+1</td><td><loq< td=""><td><1.0Q</td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-9+1</td><td><loq< td=""><td><1.0Q</td></loq<></td></loq<>	52	Cyclohexanone	108-9+1	<loq< td=""><td><1.0Q</td></loq<>	<1.0Q	
16	n-Decane	124-18-5	<loq< td=""><td><loq< td=""><td>53</td><td>Esophorone</td><td>78-59-1</td><td><l0q< td=""><td><1.0Q</td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>53</td><td>Esophorone</td><td>78-59-1</td><td><l0q< td=""><td><1.0Q</td></l0q<></td></loq<>	53	Esophorone	78-59-1	<l0q< td=""><td><1.0Q</td></l0q<>	<1.0Q	
17	n-Undecane	1120-21-4	<loq< td=""><td><l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><1.0Q</td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><1.0Q</td></loq<></td></l0q<>	54	Methyl ethyl ketone (MEK)	78-93-3	<loq< td=""><td><1.0Q</td></loq<>	<1.0Q	
18	n-Dodecane	112-40-3	<1.0Q	<loq< td=""><td>55</td><td>Methyl isobutyl ketone (MISK)</td><td></td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	55	Methyl isobutyl ketone (MISK)		<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>	
19	n-Tridecane	629-50-5	<l0q< td=""><td><loq< td=""><td></td><td colspan="5">Alcohols (LOQ=1µg/ch; #86, #87, #88, #80=10µg/ch)</td></loq<></td></l0q<>	<loq< td=""><td></td><td colspan="5">Alcohols (LOQ=1µg/ch; #86, #87, #88, #80=10µg/ch)</td></loq<>		Alcohols (LOQ=1µg/ch; #86, #87, #88, #80=10µg/ch)				
20	n-Tetradecane	629-59-4	<1.0Q	<loq< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></loq<>	56	Ethyl alcohol	64-17-5	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>	
21	a-Pinese	80-56-8	<1.0Q	<loq< td=""><td>57</td><td>n-Butyl alcohol</td><td>71-36-3</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	57	n-Butyl alcohol	71-36-3	<1.00	<l00< td=""></l00<>	
22	β-Pinene	127-91-3	<loq< td=""><td><loq< td=""><td>58</td><td>Isobutyl alcohol</td><td>78-83-1</td><td><1.0Q</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>58</td><td>Isobutyl alcohol</td><td>78-83-1</td><td><1.0Q</td><td><loq< td=""></loq<></td></loq<>	58	Isobutyl alcohol	78-83-1	<1.0Q	<loq< td=""></loq<>	
23	D-Limonene	138-86-3	<1.0Q	<l00< td=""><td>59</td><td>(sopropy) alcohol</td><td>67-63-0</td><td><1.00</td><td><1.00</td></l00<>	59	(sopropy) alcohol	67-63-0	<1.00	<1.00	
	Chlorinated hydrocar	bons (Log=1)	g/comprosed	(sample)	60	2-Ethyl hexanol	104-76-7	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>	
24	Dichloromethane	75-09-2	1807	<loq< td=""><td>61</td><td>Cyclohexanol</td><td>108-93-0</td><td><1.0Q</td><td><loq< td=""></loq<></td></loq<>	61	Cyclohexanol	108-93-0	<1.0Q	<loq< td=""></loq<>	
25	1,1-Dichloroethane	75-34-3	<loq< td=""><td><loq< td=""><td></td><td>Acetates (LOQ=1µg cls; #62</td><td>-10 µg/c/s)</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Acetates (LOQ=1µg cls; #62</td><td>-10 µg/c/s)</td><td></td><td></td></loq<>		Acetates (LOQ=1µg cls; #62	-10 µg/c/s)			
26	1,2-Dichloroethane	107-06-2	<1.0Q	<l0q< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><1.0Q</td><td><loq< td=""></loq<></td></l0q<>	62	Ethyl acetate	141-78-6	<1.0Q	<loq< td=""></loq<>	
27	Chloroform	67-66-3	<loq< td=""><td><l00< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<></td></loq<>	<l00< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<>	63	n-Propyl acetate	109-60-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>	
28	1,1,1-Trichloroethane	71-55-6	<loq< td=""><td><1.0Q</td><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	<1.0Q	64	n-Butyl acetate	123-86-4	<1.00	<l00< td=""></l00<>	
29	1,1,2-Trichloroethane	79-00-5	<loq< td=""><td><1.00</td><td>65</td><td>Isobutyl acetate</td><td>110-19-0</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	<1.00	65	Isobutyl acetate	110-19-0	<1.00	<l00< td=""></l00<>	
10	Trichloroethylene	79-01-6	<l00< td=""><td><l00< td=""><td></td><td>Ethers (LOQ= µg/c/s: #66=10</td><td></td><td></td><td></td></l00<></td></l00<>	<l00< td=""><td></td><td>Ethers (LOQ= µg/c/s: #66=10</td><td></td><td></td><td></td></l00<>		Ethers (LOQ= µg/c/s: #66=10				
1	Carbon tetrachloride	56-23-5	<loq< td=""><td><1.0Q</td><td>66</td><td>Ethyl ether</td><td>60-29-7</td><td><l00< td=""><td><1.00</td></l00<></td></loq<>	<1.0Q	66	Ethyl ether	60-29-7	<l00< td=""><td><1.00</td></l00<>	<1.00	
12	Perchloroethylene	127-18-4	<loq< td=""><td><1.0Q</td><td>67</td><td>Aert-Butyl methyl ether senso.</td><td>1634-04-4</td><td><1.00</td><td><l00< td=""></l00<></td></loq<>	<1.0Q	67	Aert-Butyl methyl ether senso.	1634-04-4	<1.00	<l00< td=""></l00<>	
33	1,1,2,2-Tetrachloroethane	79-34-5	<loq< td=""><td><loq< td=""><td>68</td><td>Tetrahydrofuran (1911)</td><td>/09-99-9</td><td><1.00</td><td>4.00</td></loq<></td></loq<>	<loq< td=""><td>68</td><td>Tetrahydrofuran (1911)</td><td>/09-99-9</td><td><1.00</td><td>4.00</td></loq<>	68	Tetrahydrofuran (1911)	/09-99-9	<1.00	4.00	
14	Chlorobenzene	708-90-7	<loq< td=""><td><1.0Q</td><td></td><td>Glycols (LOQ =1µg/c/c; 669, #</td><td>-</td><td></td><td></td></loq<>	<1.0Q		Glycols (LOQ =1µg/c/c; 669, #	-			
35	1,2-Dichlorobenzene	95-50-7	<l00< td=""><td><1.00</td><td>69</td><td>PGME</td><td>107-98-2</td><td><l00< td=""><td><1.00</td></l00<></td></l00<>	<1.00	69	PGME	107-98-2	<l00< td=""><td><1.00</td></l00<>	<1.00	
36	1,4-Dichlorobenzene	106-46-7	<loq< td=""><td><loq< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><l00< td=""><td>4.00</td></l00<></td></loq<></td></loq<>	<loq< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><l00< td=""><td>4.00</td></l00<></td></loq<>	70	Ethylene glycol diethyl ether	629-14-1	<l00< td=""><td>4.00</td></l00<>	4.00	
	Miscellaneous (LOQ #37)			amole)	71	PGMEA	108-65-6	<l00< td=""><td><1.00</td></l00<>	<1.00	
7	Acetonitrile	75-05-8	<l00< td=""><td><1.00</td><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><l00< td=""><td><1.00</td></l00<></td></l00<>	<1.00	72	Cellosolve acetate	111-15-9	<l00< td=""><td><1.00</td></l00<>	<1.00	
8	n-Vinyl-2-pyrrolidinone	88-12-0	<l00< td=""><td><l00< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><l0q< td=""><td><1.00</td></l0q<></td></l00<></td></l00<>	<l00< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><l0q< td=""><td><1.00</td></l0q<></td></l00<>	73	DGMEA	112-15-2	<l0q< td=""><td><1.00</td></l0q<>	<1.00	
1	Extra compound (1.00					Extra compound 11.00-			200	
74	Bromopropane *	106-94-5	<loq< td=""><td><l0q< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><1.0Q</td><td><1.0Q</td></l0q<></td></loq<>	<l0q< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><1.0Q</td><td><1.0Q</td></l0q<>	75	Naphthalene *	91-20-3	<1.0Q	<1.0Q	
	Total VOCs (1.0Q-50pg/com	psend/section)	1811	<1.0Q		Worksheet check	J8	20	dalessa i	

2022-4225

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

IC MRA NATA

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08061 0817

All compounds (numbered 1-73) that are reported in the analysis are covered within the scope of NATA accreditation. Any additional compounds denoted with * are not covered by NATA accreditation.

Method: WCA 207 Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry

Limit of Quantitation (LOQ): 1 µg/sample except n-Dodecane, n-Tridocane, n-Totradecane, a-Pinene, b-Pinene and Limonene at 5 µg/sample; 10 µg/sample for Acetonitrile, Acetone, Isophorone, Ethanol, n-Butyl alcohol, Isobutyl alcohol, 2-Ethyl hexanol, Ethyl acetate, Ethyl ether and Bromopropane; 50 µg/sample for n-Vinyl-2-pyrrolidione, Aceton, Diacetone alcohol, PGME, DGMEA and Naphthalene.

Method Description: Volatile organic compounds were trapped from the workplace air onto charcoal tubes by the use of a personal air monitoring pump. The volatile organic compounds were described from the charcoal in the laboratory with CS₂. An aliquot of the desorbant was analysed by gas chromatography with mass spectrometry detection.

PGME: Propylene Glycol Monomethyl Ether PGMEA: Propylene Glycol Monomethyl Ether Acetate DGMEA: Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty: The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data. The measurement uncertainty relates to the analysis of the sampling of each does not take into consideration the sampling parameters such as pump flowrate, time, temperature and pressure. The measurement of uncertainty estimates are available upon request.

2022-4225

Page 5 of 5

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW00051 0817

2022-4226

Peter Stephenson Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

SAMPLE ORIGIN: Project No: 7252

DATE OF INVESTIGATION: 12/10/2022 DATE RECEIVED: 14/10/22

ANALYSIS REQUIRED: Isocyanates in air

AMENDED REPORT OF ANALYSIS OFFICIAL: Sensitive - Personal

Lab. Reference:

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

THis amended report replaces the report previously sent dated 21/10/2022.

The results are reported for the NCO groups of TDI monomers specifically.

Martin Mazereeuw

Manager

Date: 25/11/22

U

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: lab@safework.nsw.gov.au W: testsafe.com.au ABN 81 913 830 179

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

<u>Analysis of Total Isocyanates in Air by HPLC</u> (Amended)

Client: Peter Stephenson

Date Sampled:

12/10/2022

Company: SEMA

Date Analysed:

20/10/2022

Client Reference: 7252

Laboratory Reference Number	Sample ID	Sample Type	2,4-TDI (µg NCO/Sample)	2,6-TDI (μg NCO/Sample)
2022-4226-1	728353	Impinger	0.13	0.57
2022-4226-1	728353	Filter	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-2	728354	Impinger	<loq< td=""><td>0.14</td></loq<>	0.14
2022-4226-2	728354	Filter	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-3	728355	Impinger	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-3	728355	Filter	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-4	728356	Impinger	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-4	728356	Filter	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-5	728357	Impinger	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2022-4226-5	728357	Filter	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>

Page 2 of 3

TestSafe Australia - Chemical Analysis Branch

2022-4226 - Amended

ABN 81 913 830 179 Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

Analysis of Total Isocyanates in Air by HPLC (Amended)

Client: Peter Stephenson

Date Sampled:

12/10/2022

Company: SEMA

Date Analysed:

20/10/2022

Client Reference: 7252

Method No: WCA.110 Analysis of Total Isocyanates in Air by High Pressure Liquid Chromatography

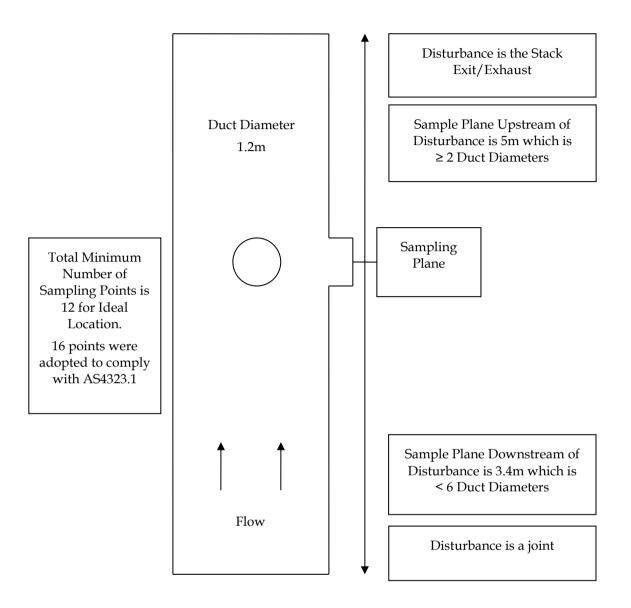
Limit of Quantitation (LOQ): 0.1 µg/Sample

Brief Description: Isocyanates are collected onto filters and/or impingers containing 1-(2-methoxyphenyl)-piperazine/toluene absorbing solution. The filters trap the greater proportion of isocyanates in the vapour phase and the impingers trap the greater proportion of isocyanates in the aerosol phase. The organic isocyanates react to form urea derivatives that are measured by HPLC using UV detection at 242 nm and electrochemical detection.

Measurement Uncertainty: The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data. The measurement uncertainty relates to the analysis of the analyte on the sampling device and does not take into consideration the sampling parameters such as pump flowrate, time, temperature and pressure. The measurement of uncertainty estimates are available upon request.

2022-4226 - Amended Page 3 of 3
TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

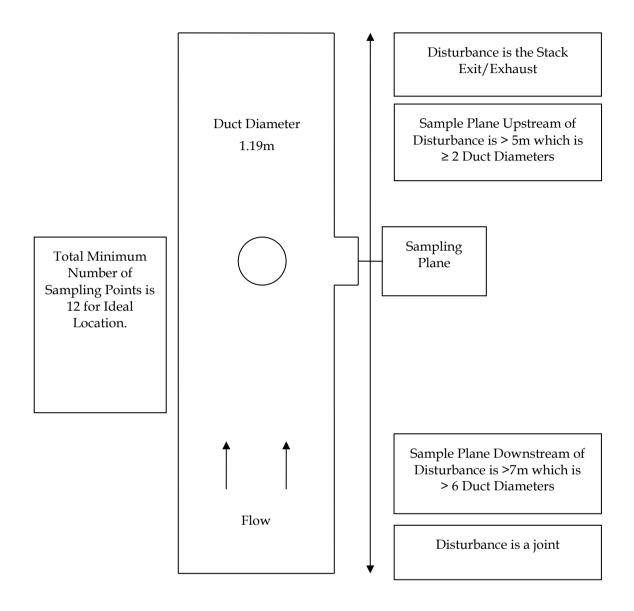

lac-mra NATA

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0617

FIGURE B-1 EPA NO.1 SCRUBBER STACK SERVING THE POURING LINE



In the absence of cyclonic flow activity ideal sampling plane conditions will be found to exist at 6-8 duct diameters downstream and 2-3 duct diameters upstream from a flow disturbance. The sampling plane does not meet this criterion. Additional sample points were used in compliance with AS4323.1 as the sampling plane was non-ideal.

The sample plane however does meet the minimum sampling plane conditions; sampling plane conditions will be found to exist at 2 duct diameters downstream and 0.5 duct diameters upstream from a flow disturbance.

The location of the sampling plane complies with AS4323.1 criteria for temperature, velocity and gas flow profile and therefore is satisfactory for gas flow sampling.

FIGURE B-2 EPA NO.2 SCRUBBER STACK SERVING THE HOT BLOCK STORE

In the absence of cyclonic flow activity ideal sampling plane conditions will be found to exist at 6-8 duct diameters downstream and 2-3 duct diameters upstream from a flow disturbance. The sampling plane does meet this criterion.

The location of the sampling plane complies with AS4323.1 criteria for temperature, velocity and gas flow profile and therefore is satisfactory for gas flow sampling.